

VAO Prozess-(MED)Simulation*

Praktische Erfahrungen mit der Simulation als Hilfsmittel bei der Planung von Notaufnahmen

(* visualisieren, analysieren, optimieren)

emtec ZNA Berlin 16. März 2017

Wo liegen Managementinteressen?

- Wirtschaftlichkeit: Erlöse T; Kosten
- * Effizienz Prozess-Steuerung/Management
- Qualitätsansprüche erfüllen
- Planungssicherheit was wäre wenn (nicht nur bei Baumaßnahmen; auch vor Change)
- Zufriedenheiten; Qualifikationen
 (Patienten, Mitarbeiter, Zuweiser...)
- Organisatorische Verbesserungen
- * weitere spezifische

Bekannte Ineffizienzen

* Kapazitatives

- ♦ Baulich Patientenpuffer/Gang, #/Größe Kabinen, ±Vorraum/Holding
- Ressourcen (Anzahl/Qualifikation Personal; Gerät; Arbeitszeit)

ℜ Prozessuales

- Unklare Zielsetzung Kenngrößen
- ♦ Bestell-Taktung der Elektiv-Ankünfte Stellgrößen
- ♦ Reihenfolge der Abläufe Lage der Leistungsorte
- Administratives; Patientenabruf und Transporte
- ♦ Prozesskosten

Planungsphasen heute und in Zukunft

Planungs- phasen	Konzeption	Entwurf	Durch- führung	Betrieb
Bisher (meistens)	Daten	Geometrie 3D	Bauablauf 4D	Prozesse unberücksichtigt
Kostenfaktor zur Fehlerkorrektur der vorigen Phase	1	10	100	1000
ZUKUNFT	Prozesse, Daten und vorweg- nehmende VAO- ProzessSimulation	Geometrie 3D	Bauablauf 4D	Prozesse 5D

" Urkonflikt "

"Architekten sind plötzlich mit Dingen konfrontiert, die sie viel früher hätten wissen sollen. "
(Zitat E. Feddersen, KH-Architekt)

Welcher methodische Ansatz kann hier weiterhelfen, um Auftraggeber und Planer zusammen zu bringen?

Die initiative ProzessOrientiertesPlanen

- ♦ begutachtet, begleitet
 - Mirtschaftliches, Prozessuales, Bauliches, Betriebsorganisatorisches, Medizin- und Informationstechnisches, Marktbetrachtungen
- plant, verbessert Machbares möglich machen Tunktionales, Sinnvolles, Ergebnisorientiertes
- sichert ab die Zukunft vorwegnehmen, durch
- X Kommunizieren, Verifizieren, Validieren, VAO-Computersimulieren

 Dr. Klaus Kühn. Felix Alies

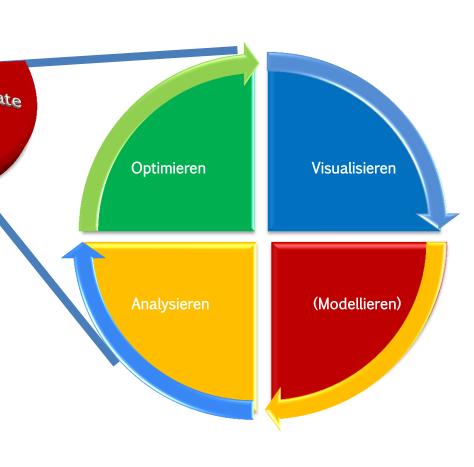
initiative ProzessOrientiertesPlanen

* Initiativpartner (multidisziplinär, symbiotisch)

- ♦ Felix Aries, Architekt : MedPlan Schaffhausen
- ♦ Dr. Daniel Blöchle: ikl ingenieurbüro FM, Karlsruhe
- ♦ Dr. Thomas Koch: IT-Beratung, Wiesenbach
- ♦ Dr. Klaus Kühn: IASimulation, Nienstädt
- ♦ Dr. Michael Petri: Hospital Consulting, Köln
- ♦ Günther Pichler: advanced profit control, Wien
- ♦ Peter Rode, MedTech: CEMRO Management, Berlin
- ♦ Christiane Velten: Managementberatung QM, Auggen
- ♦ Wolfgang Wolf: novis-CC, Berlin

VAO Prozess – (MED)Simulation ergänzt PDCA und..

...ist eine erprobte, transparente, anschauliche Methodik, mit der Planer und Klinikmanager bei zeitlich vertretbarem Aufwand* zu wirkungsvollen wirtschaftlichen Lösungen und zu Planungssicherheit für Architekten und Auftraggeber gelangen.



*ca. 20 Manntage, wobei Prozessverantwortliche an maximal 3 Tagen einbezogen werden

VAO – Prozess – (MED) Simulation...

...unterstützt Klinikleitung und Architekten, um 1 Simulate Prozesse per "in silico" VAO-Simulation darzustellen, zu analysieren und zu optimieren und um die Interessen und angestrebten Ziele in der Realität sicherer zu erreichen.

VAO - Eine strukturierte und erfolgreiche Methodik

Visualisierung – statisch (Erkenntnisgewinn!)

Verstehen, Erarbeiten, Präsentieren, Kommunizieren, Verifizieren, Validieren

Analyse – dynamisch (nur per Simulation möglich – AHA-Effekte – Denkfabrik "in silico")

Ergebnisse, Auswertungen, Auswirkungen von Änderungen auf Kenngrößen/KPI ("Erfolgsbestimmer")

Optimierung – dynamisch (Simulation - Zukunftswerkstatt)

Ermittlung und Auswahl der besten Prozesse und Parameter/Stellgrößen

=> Unterstützung bei der Umsetzung

Diese Reihenfolge einzuhalten ist essentiell für den Erfolg – nicht nur - der Simulationsprojekte

Zwei Beispiele aus der Praxis

Der Erfolg zählt. Die Misserfolge werden gezählt.

Nikolaus Cybinski

Dr. Klaus Kühn, Felix Aries www.lASim.de

Projekt ZNA Kapazitäten -Was sagen wir dem Architekten?

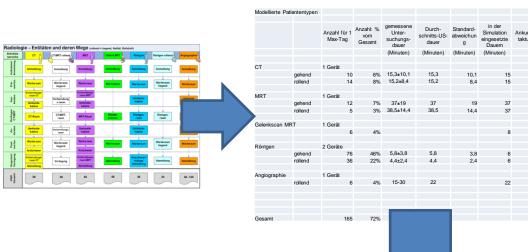
Zielsetzung nach SMART:

Maximale Auslastung (> xy %) der ZNA bei minimaler Wartezeit der Patienten (< min) im nächsten Quartal

Kenngrößen:

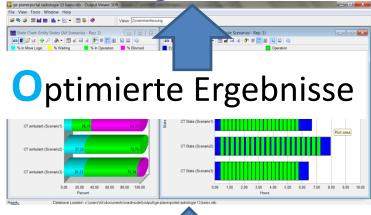
Auslastung, Wartezeiten, Kosten, Anzahl Patienten pro Tag, (optional Wegedauern/-anteile)

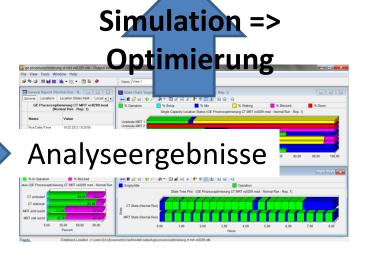
Stellgrößen:


Anzahl Personal, Raumkapazitäten

Der VAO-Prozess Check Ein Projektbeispiel - mehr im Workshop

Visualisierung


Dateneingabe



Simulation =>
Analyse

Optimum => Planungssicherheit

Der VAO-Prozess Check Ein Projektbeispiel

Nähere Informationen zum VAO-Prozess Check erhalten Sie über den Gastzugang:

http://iasim.de/leistungen/moodle/login/index.php

Ausgangslage:

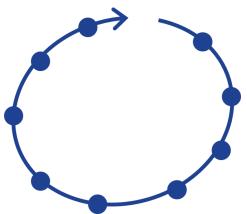
- Klinikum mit zwei räumlich getrennten Notfallabteilungen (chirurgischer und medizinischer Notfall)
- Steigende Patientenzahlen führen zu räumlichen und prozessualen Engpässen
- Neuer Notfallprozess wurde entwickelt und muss nun umgesetzt werden
- Entwickeltes Raumprogramm wurde in einem ersten Grundrissvorschlag abgebildet

Aufgabe:

- Visualisierung des Notfallprozesses sowie aller damit verbundenen Sub-Prozesse im erarbeiteten Grundrissvorschlag
- Überprüfung des Raumprogramms bezüglich Anzahl, Grösse (Kapazität) und Positionierung der Raumeinheiten

Ziel:

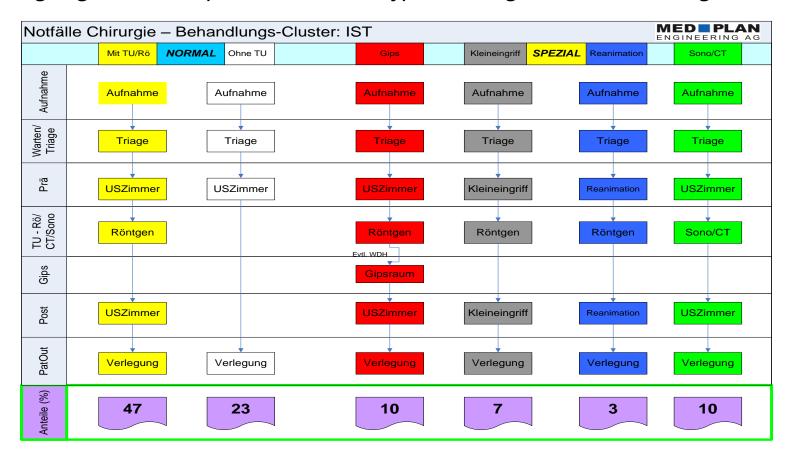
- Verlässliches Raumprogramm als Grundlage für weitere Projektbearbeitung
- Optimale Raumanordnung unter Berücksichtigung prozessualer und architektonischer Gesichtspunkte
- Abbildung Kapazitäten für Steigerungsrate Patientenzahlen von +30%
- Gegebenenfalls Entwicklung eines optimierten Grundrissvorschlags


Methode:

- Erfassung von IST-Prozesspfaden mit Nutzern
- Darstellung IST-Zustand (Grundriss) mit IST-Datengrundlage
- Simulation SOLL-Konzept und Variation Stellgrössen

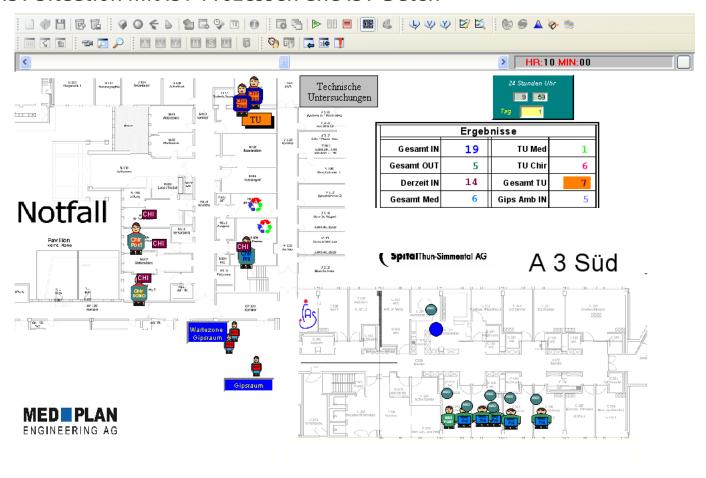
Vorgehen:

- Workshop 1: Gemeinsame Ziele festlegen
- Identifikation relevante Patientengruppen
- Identifikation Pfade pro Patientengruppen
- Datenaufbereitung inkl. Datenaufnahme vor Ort
- Visualisieren, verifizieren und validieren IST-Abläufe/Prozesse
- Erstellung Modell MedSimulation:
 animierte IST-Situation und animierte SOLL-Situation mit IST Prozessen
- Workshop 2: Feinabstimmung Prozesse und Ergebnisse
- Optimierung Grundriss
- Erstellung optimiertes Simulationsmodell mit SOLL-Prozessen
- Überprüfung Raumplanung
- Simulation von Zukunftsszenarien: Ergebnisse und Empfehlungen


Ergebnisse I:

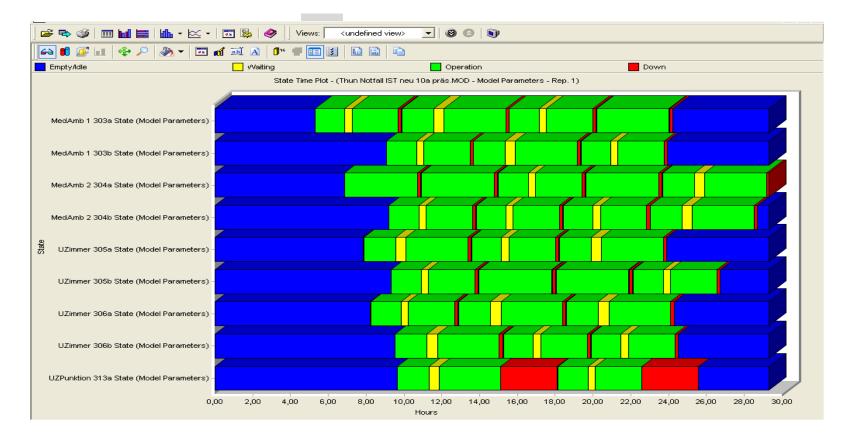
- Gemeinsam definierte Kenngrössen:
 - Patientenzahlen (der einzelnen Patiententypen)
 - Wartedauern
 - Raumbedarf und Raumanordnung
 - Raumauslastung
- Gemeinsam definierte Stellgrössen:
 - Raumkapazitäten
 - Patientenzahlen (Zuwachsraten)
 - Eintrittsmuster Patienten
 - Wegzeiten/Distanzen

Ergebnisse II:


Festgelegte Patientenpfade je Patiententyp und Fachgebiet inkl. Zuteilung Räume

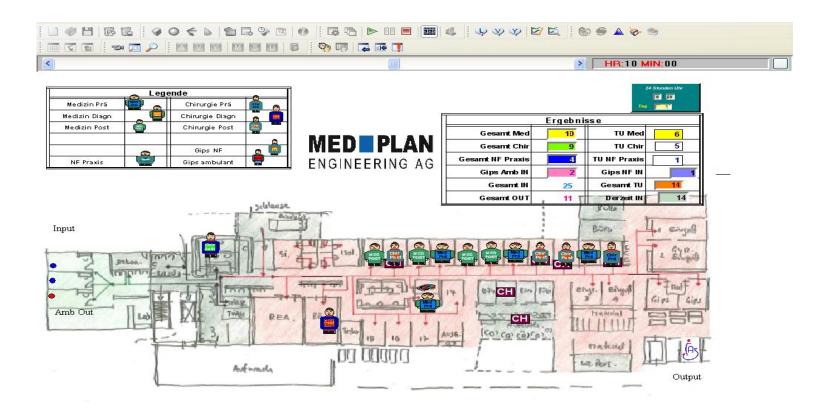
Ergebnisse III:

Simulation IST Situation mit IST-Prozessen und IST-Daten

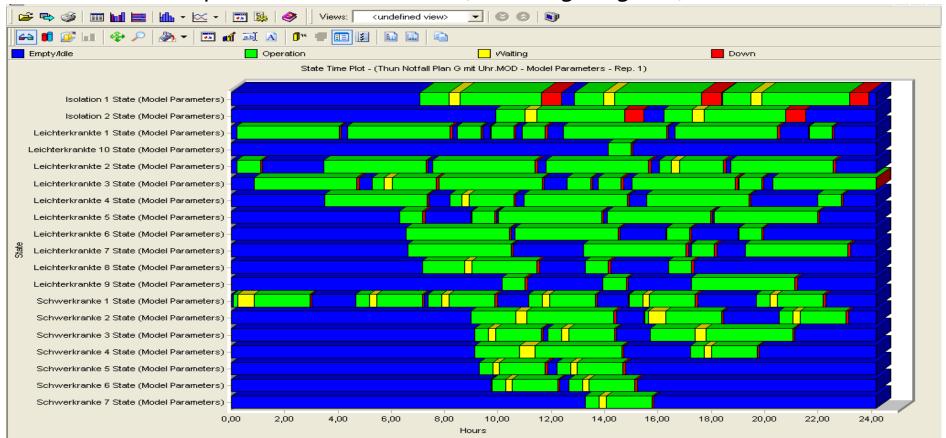


Dr. Klaus Kühn, Felix Aries www.lASim.de

Ergebnisse IV:

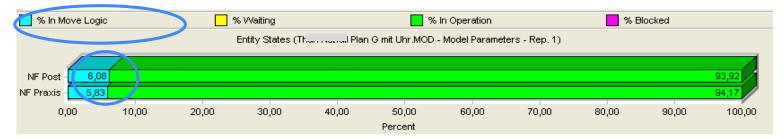

Raumauslastung IST zur Validierung der Datengrundlage

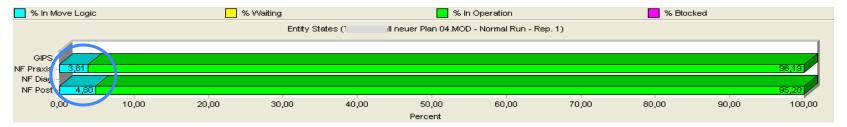
Ergebnisse V:


Simulation Konzept-Grundriss mit IST-Daten (ohne Steigerungsrate)

Ergebnisse VI:

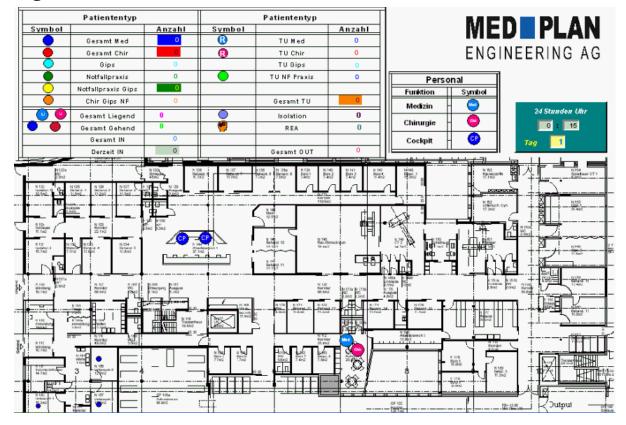
Simulation Konzept-Grundriss mit IST Daten (ohne Steigerungsrate)



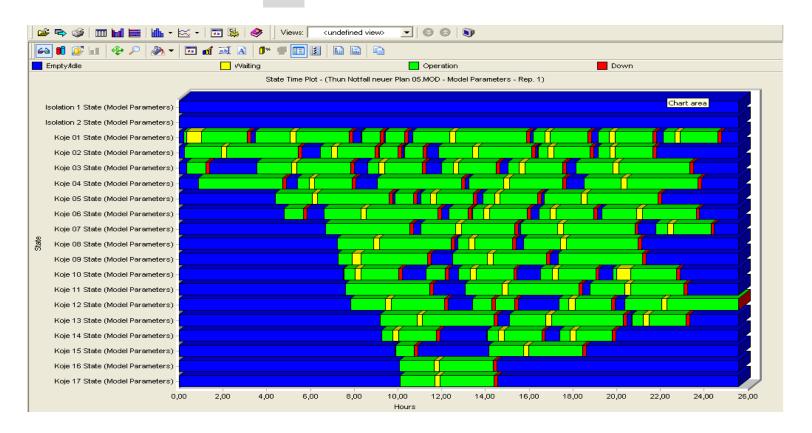

Ergebnisse VII:

 Simulation Szenarien "Positionierung Radiologie" und Analyse Auswirkungen auf Wegzeiten

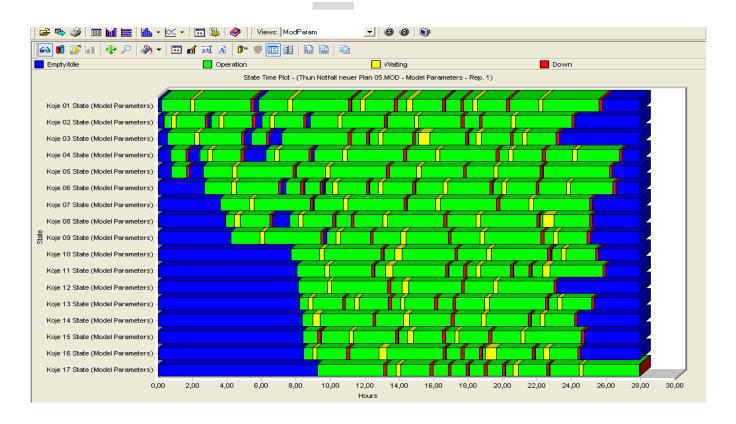
Layout-Version I


Layout-Version II

Ergebnisse VIII:


 Weiterentwicklung Grundriss und nochmalige Überprüfung der Auslastung als Grundlage für Ausschreibung GU Wettbewerb

Ergebnisse IX:


Weiterentwicklung Grundriss und nochmalige Überprüfung der Auslastung

Ergebnisse X:

Simulation Konzept-Grundriss mit Steigerungsrate Patientenzahlen +50%

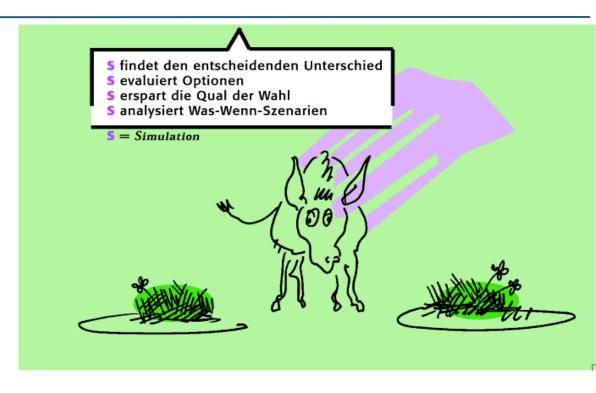
Anwendungen im Gesundheitswesen (weitere Beispiele)

- Vergleichsanalyse verschiedener (baulicher) Optionen (z.B. Radiologie, Patientenaufnahme, OP-Bereich)
- * Auslastungsanalysen (z.B. OP, Radiologie, ZSVA, ZNA)
- Absichern geplanter Neu- und Umbaumaßnahmen (Wie folgt die "Form" der Funktion?)
- Feststellen der Anzahl erforderlicher Ressourcen (Mitarbeiter, Geräte, FTPs)
- Prozess-, Pfadanalyse und optimierung
- Ermitteln der DRG-Kostenanteile (verursacherbezogen, abc)
- * Prüfen von Arbeitszeitmodellen
- Effizienzbetrachtungen (Einsatz statistischer Verteilungen)

Nutzen der VAO-Prozess-(MED)Simulation

- * Was-wäre-wenn-Planungssicherheit
- * Rasches und objektives Erkennen von Möglichkeiten zur Kapazitäten- und Ablaufoptimierung
- * Prozesse werden visualisiert (veranschaulicht, animiert), analysiert und optimiert
- * Teamstärkung beteiligt Betroffene ("spielerisch" risikofreier partizipativer Ansatz)
- * Analyse der Wirtschaftlichkeit Effizienzverbesserung
- * Realistischere Amortisationsberechnung (Risikominderung)

Kompetente Vorbereitung und Absicherung von Plänen


Nutzen für Patienten, Personal und Management

- ✓ Kürzere bis keine Wartezeiten
- ✓ Kurzer Zentrumsaufenthalt
- ✓ weniger Belastung
- ✓ Zufriedenheit
- ✓ Neutralität
- ✓ Optimierte Ergebnisse
- ✓ Daten- und Ergebnis-Sicherheit
- ✓ Erst simulieren dann investieren!

Wir hoffen, mit diesen Ausführungen...

..Ihre Neuerungsorientierten Zellen stimuliert und Ihre Gedanken auf neue Rillen gesetzt zu haben.

Grubenstrasse 1 CH-8200 Schaffhausen Tel. +41 52 644 88 88 Fax +41 52 644 88 00 info@medplan.ch www.medplan.ch Institut für Angewandte Simulation Dr. Klaus Kühn Liekweger Str. 31 31688 NIENSTÄDT Tel: + 49 (0) 5721 93 88 707 info.IASim.de